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In the presence of inhomogeneities the propagation of elastic wave energy can be modeled by
radiative transport equations. This is a good approximation when (i) typical wavelengths are short
compared to the overall propagation distance, (ii) correlation lengths are comparable to wavelengths
so that the inhomogeneities have appreciable effect and (iii) the fluctuations are weak. The relevant
transport equations are derived in [1] starting from the elastic wave equations in an unbounded
medium.

There is one consequence of the transport equations that may be important in understanding
from first principles the stability of the P/Lg ratio that has proven so useful in yield estimation
[2]. This is the fact that over distances (and times) that are long compared to the transport mean
free path (transport mean free time), which is the diffusive regime, the P to S energy conversion
by the random inhomogeneities equilibrates in a universal way, independent of the details of
the scattering. There is an equipartition of energy [1] that leads to the relation

v3

Ep (t,x) = vS Es(t,x). (1)

Here Ep and Es are the P and S spatial energy densities, and vp and vs are the P and S wave
speeds, respectively. For typical values of the P and S speeds this relation becomes ES lOEp,
which is in general agreement with observations.

The above equipartition law was derived when P to S mode conversion is generated by volume
scattering. To get the correct equipartition law when Lg waves are present we have to model
correctly the elastic wave scattering process in the crustal region and get the relevant radiative
transport equations. That is, we must account correctly for the free surface and for the crustal
waveguide in the radiative transport approximation. We are studying this problem at present.
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STABILITY OF THE P TO S ENERGY

RATIO IN THE DIFFUSIVE REGIME

GEORGE C. PAPANICOLAOU, LEONID V. RYZHIK AND JOSEPH B. KELLER

INTRODUCTION

In the presence of inhomogeneities the propagation of elastic wave energy can be mod-
eled by radiative transport equations. This is a good approximation when (i) typical wave-
lengths are short compared to the overall propagation distance, (ii) correlation lengths are
comparable to wavelengths so that the inhomogeneities have appreciable effect and (iii)
the fluctuations are weak. The relevant transport equations are derived in [1] starting from
the elastic wave equations in an unbounded medium.

There is one consequence of the transport equations that may be important in under-
standing from first principles the stability of the P/Lg ratio that has proven so useful in
yield estimation [2]. This is the fact that over distances (and times) that are long compared
to the transport mean free path (transport mean free time), which is the diffusive regime,
the P to S energy conversion by the random inhomogeneities equilibrates in a universal
way, independent of the details of the scattering. There is an equipartition of energy
[1] that leads to the relation

Sp(t,x) = VS- Es(t,x). (1)
2vp

Here Sp and Es are the P and S spatial energy densities, and vp and vs are the P and S
wave speeds, respectively. For typical values of the P and S speeds this relation becomes

SS - 10p, which is in general agreement with observations.
The above equipartition law was derived when P to S mode conversion is generated by

volume scattering. To get the correct equipartition law when Lg waves are present we
have to model correctly the elastic wave scattering process in the crustal region and get
the relevant radiative transport equations. That is, we must account correctly for the free
surface and for the crustal waveguide in the radiative transport approximation. We are
studying this problem at present.

OBJECTIVE: RADIATIVE TRANSPORT FOR ELASTIC WAVES

Radiative Transport Equations.
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The theory of radiative transport was originally developed to describe how light energy
propagates through a turbulent atmosphere. It is based upon a linear transport equation
for the angularly resolved energy density and was first derived phenomenologically at the
beginning of this century [3,4]. We show in [1] how this theory can be derived from the
governing equations for light and for other waves of any type, in a randomly inhomoge-
neous medium. Our results take into account nonuniformity of the background medium,
scattering by random inhomogeneities, the effect of polarization, the coupling of different
types of waves, etc. The main new application is to elastic waves, in which shear waves
exhibit polarization effects while the compressional waves do not, and the two types of
waves are coupled. We also analyze solutions of the transport equations at long times and
long distances and show that they have diffusive behavior.

Transport equations arise because a wave with wave vector k' at a point x in a ran-
domly inhomogeneous medium may be scattered into any direction k with wave vector k.
Therefore one must consider the angularly resolved, wave vector dependent, scalar energy
density a(t, x, k) defined for all k at each point x and time t. Energy conservation is
expressed by the transport equation

9a(t, x, k) + VkW(x, k) - Vxa(t, x, k) - Vxw(x, k) - Vka(t, x, k)
9t

= j , (x,k,k')a(t,x,k')dk' - E(x,k)a(t,x,k). (2)

Here w(x, k) is the frequency at x of the wave with wave vector k, 0-(x, k, k') is the differ-
ential scattering cross-section, the rate at which energy with wave vector k' is converted
to wave energy with wave vector k at position x, and

J o(x,k',k)dk' = E(xk) (3)

is the total scattering cross-section. Both a and E are nonnegative and a is usually
symmetric in k and k'. For an acoustic wave the differential scattering cross-section is
given by

a(x, k, k) = ((k- kl') 2 !•pp(k - k') + 2(k-k')RpK(k- k') + !KK(k - k'))

7rV2(x)1k12 6(v(x)lkl - v(x)lk'l), (4)
2

where !•PP, ?pe. and kRK are the power spectra of the fluctuations of the density p and
compressibilty r defined in [1]. The left side of (2) is the total time derivative of a(t, x, k)
at a point moving along a ray in phase space (x, k), which means that the frequency of the
ray is adjusting to the appropriate local value. The right side of (2) represents the effects
of scattering.

The transport equation (2) is conservative because

IIa(t, x, k)dxdk = const
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when the total scattering cross-section is given by (3). For simplicity we will assume that
we do not have intrinsic attenuation. However, attenuation is easily accounted for by
letting the total scattering cross-section be the sum of two terms

E(x, k) = Ec(x, k) + Eab(x, k)

where E., 0(x, k) is the total cross-section due to scattering and is given by (3) and Y2,b(X, k)
is the attenuation rate.

The reason that power spectral densities of the inhomogeneities determine the scattering
cross-section (4) is seen most easily from a Born expansion of the wave equations when
the inhomogeneities are weak. This is because the single scattering approximation of (2)
and the second moments of the single scattering approximation for the underlying wave
equations (the Born expansion) must be the same. The latter are determined by the power
spectra of the inhomogeneities. In the same manner we can explain the appearance of the
delta function in the cross-section (4) when the random inhomogeneities do not depend on
time and therefore the frequencies are unchanged by the scattering. The transport equation
(2) arises also when the waves are scattered by discrete scatterers that are randomly
distributed in the medium. In this case the scattering cross-section (4) is the same as the
cross-section of a single scatterer times the density of scatterers. We will deal only with
continuous random media in [1].

Equation (2) has been derived from equations governing the particular wave motion
under consideration by various authors such as Stott [5], Watson [6,7,8,9], Barabanenkov
et.al. [10], Besieris and Tappert [11], Howe [12], Ishimaru [13] and Kohler et. al. [14] with
a recent survey presented in [15]. These derivations also determine the functions w(x, k)
and a(x, k, k) and show how a is related to the wave field. In [1] we derive (2) and these
functions as a special case of a more general theory. We expect that radiative transport
equations will provide a good description of wave energy transport when, as mentioned in
the Introduction, (i) typical wavelengths are short compared to macroscopic features of
the medium (high frequency approximation), (ii) correlation lengths of the inhomogeneities
are comparable to wavelengths and (iii) the fluctuations of the inhomogeneities are weak.
It is difficult to compare wavelengths with correlation lengths in general because both can
vary over very broad and overlapping ranges. Condition (ii) is important because it allows
overlapping and therefore strong interaction between the waves and the inhomogeneities,
which is the most interesting and difficult case to analyze. In addition to these three
conditions, the inhomogeneities must not be too anisotropic because it is well known that in
layered random media, for example, we have wave localization even with weak fluctuations,
which is quite differnt from wave transport phenomena [16]. When the fluctuations are
strong we can have wave localization even when the inhomogeneities are isotropic [17,18].

We also analyze the diffusive behavior of solutions of (2) which emerges at times and
distances that are long compared to a typical transport mean free time 1/E and a typical
transport mean free path IVkWj/,, respectively. In this regime the phase space ener-
gy density a(t, x, k) is approximately independent of the direction of the wave vector k,
a(t, x, k) "-s d(t, x, Ikl) and in the simplest, spatially homogeneous case a satisfies the dif-
fusion equation Oa

V. - (DVad) (5)
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with a constant diffusion coefficient D = D(IkD) that is determined by the differential
scattering cross-section o and is given in [1]. Diffusion approximatons for scalar transport
equations are well known [19], including their behavior near boundaries [20,21]. We show
that diffusion approximations are also valid for the more general transport equations that
arise for electromagnetic and elastic waves.

Transport Theory for Elastic Waves.

Radiative transport theory was first used in seismology by R.S. Wu [22]. The sta-
tionary, scalar transport equation was used to successfully assess scattering and intrinsic
attenuation (the albedo) in several papers [23-28] and the time depandent scalar transport
equation was used by Zeng, Su and Aki [29], Zeng [30] and Hoshiba [31]. In all these
papers the vector nature of the underlying elastic wave motion was not taken into con-
sideration. Mode conversion for surface waves was considered in a phenomenological way
by Chen and Aki in [32] and general mode conversion between longitudinal compressional
or P waves and transverse shear or S waves was considered by Sato in [33] and by Zeng
in [34]. However, the transport equations proposed phenomenologically in [33,34] do not
account for polarization of the shear waves. Starting from the elastic wave equations in a
random medium we derive in [1] a system of transport equations that accounts correctly
for P to S mode conversion and for polarization effects.

Longitudinal P waves propagate with local speed vp(x) = Ir(2y(x) + A(x))/p(x) and
transverse shear or S waves that can be polarized propagate with local speed vs(x)

t(x)/p(x). The corresponding dispersion relations are wp = vplkl and ws = vslkl,
respectively. The P and S wave modes interact in an inhomogeneous medium because a
P wave with a wavenumber Iki when scattered can generate an S wave with wavenumber
jpf with the same frequency that is, vp(x)IkI = vs(x)jpl, and vice versa. These scattering
processes conserve energy and the transport equations for P and S waves energy densities
must therefore be coupled. The transport equation for the P wave energy density should
be a scalar equation similar to (2) with an additional term that accounts for S to P energy
conversion. Similarly, the transport equation for the S wave coherence matrix should be
like Chandrasekhar's equation [3] with an additional term that accounts for P to S energy
conversion. We show in [1] that this is indeed the case and we determine explicitly the
form of the scattering cross-sections in terms of the power spectral densities of the material
inhomogeneities.

The coupled transport equations for the P wave energy density aP(t, x, k) and the 2 x 2
coherence matrix WS(t, x, k) for the S waves have the form

Oaa
--a + VkwP . VxaP - VxW. VkaP

= J OPP(k,k')aP(k')dk' - EPP(k)aP(k) (6a)

+J aPS(k k')[WS(k')]dk1 - §PS(k)aP(k)
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and

Ws + VkwS. VxWS VxWs • VkWs + WN - NW

J ass(k,k,)[WS(k,)]dk, - ESS(k)Ws(k) (6b)

+ f asP(kkI)[aP(k')Idk'- FISP(k)WS(k).

The differential scattering cross-section a PP(k, k') for P to P scattering is similar to (4)

for scattering of scalar waves and the differential scattering tensor a'SS(k, k') is similar to

Chandrasekhar's tensor [3]. They have the form

=PP(k, k') =- orp(k, k')6(vpIkI - vpIk'1) (7)

and
.SS(k k,)[W(k,)] = {uTTT(k,k,)W(k')T(k' , k) + cl'(k, k')W(k')r(k', k)

rT~k k')Wk] Fs (k, k')W(k')T(k', k) +as

+a± r(T(k, k')W(k')F(k, k) + P(k, k')W(k)T(k', k)}

6(vslkl - vslk'i), (8)

where the 2 x 2 matrices T(k, k') and r(k, k') are defined by

Tij(k, k') = z(')(k)• z(')(k') (9)

and
riF(k, k') = (k' )(z(i)(k)- z(')(k')) + ( z1 -)(k'))(k' z(i)(k)) (10)

with (k, z( 1)(k), z( 2)(k)) the orthonormal propagation triple consisting of the direction of

propagation k and two transverse unit vectors z(1)(k), z(2) (k), which in polar coordinates

are
('sin~coso) (Cos 0Cos$ _ /2 - sinq

sin 0sinq , z(')(k)= Cos 0sin4 0 , z 2 (k)- Cosq(1

CosO / -sinO 0/

The scalar functions app and a,, are given in terms of power spectral densities of the

inhomogeneities in [11 The total scattering cross-sections Epp and E]SS are the integrals

of the corresponding differential scattering cross-sections, as in (3), since we assume that

there is no intrinsic dissipation.
The coupling matrix N is given by

N(xk) == 3 av(x) kIz(k z( 2)(k)(0 (12)

OXk Oki  -1 0"
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The scattering cross-sections for the S to P and P to S coupling terms, aPS and asp

respectively, have the form

UPS(k, k')[WS(k')] =Tr(op8 (k, k')g(k, k')[Ws(k')])6(vplkl - vs k'I) (13)

uSP(k, k')[aP(k')] =aps(k, k')G(k', k)[aP(k')I]6(vslkl - vpjk'I)

where the tensor 9(k, k') acts on 2 x 2 matrices

G(k, k')[X] = l(G(k, k')X + XG(k, k')) (14)

with the 2 x 2 matrix G given by

Gii(k,k') = (k. z()(k'))(k • z(J)(k')). (15)

The scalar function ap, is given explictly in terms of power spectral densities of the inho-
mogeneities in [1].

The geometrical meaning of the 2 x 2 matrices T, r and G that appear in the differ-
ential scattering cross-sections (8) and (13) is similar to the one for T that appears in
Chandrasekhar's equations [3]. They arise from a single scattering event of P and S waves
with wave vector k' that scatter to P and S waves with wave vector k and from the fact
that the transport equations deal with quadratic field quanitties.

As for the scalar transport equation (3) and Chandrasekhar's equations [3], the elastic
transport equations (6) simplify considerably in the regime where the diffusion approx-
imation is valid that is, when the transport mean free path is small compared to the
propagation distance. In this regime the P wave energy density aP(t, x, k) and the S wave
coherence matrix Ws(t, x, k) are independent of the direction of the wave vector k, WS
is proportinal to the identity matrix

aP(t,x,k) ,,, 0(t,x, Ikl), WS(t,x,k) - w(t,x, jkj)I (16)

and in addition we have the relation

0(t,x, Ikl) - w(t,x, vpfkl). (17)
vs

with 0 satisfying the diffusion equation (5). The diffusion coefficient D(IkI) is given ex-
plicitly in [1].

The integrated over k form of the relation (17) is

Ep(t,x) = 2-- Es(t,x) (18)

where £p and £s are the P and S wave spatial energy densities that are related to aP and
Ws by

£p(t,x) = JaP(t,x,k)dk
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and

Es(t, x) = TrWS(t, x, k)dk,

respectively. From the point of view of seismological applications of transport theory,
relation (18) is important because it predicts universal behavior of the P to S wave energy
ratio, in the diffusive regime. When we use the typical S to P wave speed ratio of 1 to 1.7,
relation (18) predicts Es/Cp - 10. This is in general agreement with seismological data and
it would be interesting to identify cases where £s/Ep stabilizes. This stabilization, which
is derived here from first principles, is reminiscent of the important empirical observation
of Hansen, Ringdal and Richards [2] regarding the stabilization of the Lg wave energy.

RESEARCH ACCOMPLISHED: TRANSPORT IN UNBOUNDED MEDIA, EQUIPARTITION

The main accomplishments of the research reported in [1] and summarized here axe (i)
the derivation from first principles of the correct radiative transport equations for elastic
wave motion in unbounded media (2) the demonstration that polarization of shear waves
is important and must be taken into consideration and (iii) the demonstration that in
the diffusive regime there is a universal P to S wave energy stabilization. This energy
equipartition phenomenon, although inuitively clear was not known before and the precise
form (1) that it takes is not easy to guess. It is perhaps the simplest instance of many
different energy equipartition laws that are valid in other complex situations, such as the
ones encountered in crustal wave propagation, that have not been discovered yet.

RELEVANCE: P TO S CONVERSION STABILIZATION

The relevance to yield estimation is immediate because, as noted in [2] and elsewhere
since that paper appeared, P to Lg energy stabilization is the basis for a very successful
yield estimation method. We have shown P to S energy stabilization so far, but we believe
that the mechanism that controls it, equilibration of multiple scattering effects, is the same
for P to Lg stabilization although the precise energy relation analogous to (1) is not known
and is likely to be more complicated. The authors of [2] understood qualitatively the role
of multiple scattering in the stabilization of P to Lg energy but did not note its universality
and independence from the detailed mechanism of the scattering.

CONCLUSIONS AND RECOMMENDATIONS

The use of transport theory in seismology is a promising research frontier and some
very basic issues in yield estimation and other applications have their roots in it and will
benefit enormously from a deeper understanding of its implications. An important next
step for us is the explicit treatment of P to Lg energy stabilization by modeling the crustal
structure in a suitable way and by deriving the transport equations for wave propagation
it. Our goal is to get the form of relations like (1) that are valid in this context for the
various elastic wave modes.
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